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Abstract
Ten conserved quantities corresponding to the symmetry of the composite
system of point-like charged particle and electromagnetic field under the
Poincaré group are expressed in terms of particle variables. It is shown that the
Lorentz–Dirac equation contradicts the differential consequence of the ‘centre-
of-mass’ conserved quantity which arises from the invariance of the system
under Lorentz transformation.

PACS numbers: 41.20.−q, 03.50.−z

1. Introduction

The Lorentz–Dirac equation is an equation of motion for a charged particle under the influence
of an external force as well as its own electromagnetic field. The particle’s world line is
described by the functions zα(τ ) which give the particle’s coordinates as functions of proper
time τ . We define uα(τ ) = dzα(τ )/dτ as the 4-velocity and aα(τ ) = duα(τ )/dτ as the
4-acceleration. The Lorentz–Dirac equation is written as

maα = Fα
ext + 2

3e
2(ȧα − uα

(
aµa

µ
))

(1.1)

where m is the particle’s rest mass, e its charge,Fα
ext the external force and ȧα(τ ) = daα(τ )/dτ .

The third term takes into account the energy loss due to radiation, the second one follows from
a proper relativistic treatment given first by Schott (1915), and is called the ‘Schott term’. If
the first term is the Lorentz force, the Schott term is necessary in order to preserve the equality
uµ u

µ = −1.
The problems of runaway solutions (where acceleration grows expotentially with time)

and pre-acceleration (when acceleration begins to increase prior to the time at which the
external force switches on) occur in this theory [1] . They cast serious doubt on the validity of
the Lorentz–Dirac equation.

The law of conservation of the total 4-momentum of a composite (particle plus field)
system provides the foundation for Dirac’s derivation [2] of the radiation-reaction force. The
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verification of energy conservation is not a trivial matter, since the Lorentz–Dirac equation is
derived with the help of a mass renormalization procedure, which involves the manipulation
of the divergent self-energy of a point charge.

There are many derivations which are patterned after Dirac’s classical paper [2] (see, for
instance, [1, 3, 4]). Although they differ from it in their technical aspects, all the derivations
involve the Taylor expansion of a finite sized charged sphere in which the first two terms lead
to the electromagnetic self-energy and the Abraham radiation-reaction 4-vector, respectively.
Following [2], the authors enclose a world line within a thin world tube and calculate an
electromagnetic flow across this surface per unit proper time. In fact, they calculate the
time derivative of the energy–momentum 4-vector. My main objective is to calculate how
much electromagnetic field momentum flows across hyperplane t = {

y ∈ M 4 : y0 = t
}

at
fixed instant time t. Thanks to such a computation we make sense of the so-called ‘mass
renormalization’ procedure and the separation of the ‘structure-independent’ Schott term.
These methods are very important to obtain the Lorentz–Dirac equation (1.1).

The physical meaning of a decomposition of the electromagnetic field’s stress–energy
tensor into radiative and bound components will be fully elucidated too. The Schott term in
the Lorentz–Dirac equation originates from the bound component of the Maxwell energy–
momentum tensor density. Teitelboim shows [3] that due to volume integration of this
component we obtain an electromagnetic 4-momentum carried by the particle around it. In
fact, by this he means the particle 4-momentum

pµ = muµ − 2
3e

2aµ (1.2)

which contains, apart from the usual velocity term, also a contribution from the acceleration
when the particle is charged. We substantiate Teitelboim’s concept so far as the particle’s
electromagnetic ‘fur’ is concerned.

The main goal of the present paper is to check the consistency of the Lorentz–Dirac
equation with fundamental principles such as energy–momentum conservation and the
conservation of total angular momentum. By ‘fundamental principles’ we mean the ten
conserved quantities corresponding to Poincaré-invariance of a composite particle plus field
system.

Of course, the divergent self-energy term arises unavoidably whenever one introduces
point charges in classical electrodynamics. Following [1], we assume that an intrinsic structure
of a charged particle is beyond the limits of classical theory (except that its ‘radius’ does not
vanish, though it is too small to be observed). For this reason the mass renormalization is not
necessary.

Our emphasis will be on rigorous calculations and exact solutions based on standard
classical electrodynamics supplemented with Rohrlich’s heuristic assumptions so far as the
dynamics of a single charged particle is concerned [1, sections 6.2 and 6.4].

2. Energy–momentum conservation

In this section, we check a balance between electromagnetic field momentum and mechanical
momentum of an arbitrarily moving particle. We only assume that the particle is asymptotically
free at the remote past and at the distant future. We suppose ‘that the action of the force is
reasonably limited in space–time’ [1].

2.1. Preliminaries

We choose the metric tensor ηµν = diag(−1, 1, 1, 1) for Minkowski space M 4. We use the
Heaviside–Lorentz system of units with the velocity of light c = 1. Summation over repeated
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indices is understood throughout the paper; Greek indices run from 0 to 3, and Latin indices
from 1 to 3. The particle trajectory

ζ : R → M 4
(2.1)

t �→ (t, zi(t))

is meant as a local section of trivial bundle (M 4, i,R) where the projection

i : M 4 → R

(2.2)
(y0, yi) �→ y0

defines the instant form of dynamics [5].
We define u0 := γ and ui := γ vi , vi = dzi(t)/dt , the components of the particle’s

4-velocity; its 4-acceleration is aµ = γ duµ/dt where the factor γ := 1/
√

1 − v2. We
shall use the particle’s momentarily co-moving Lorentz frame (MCLF) where the particle is
momentarily at rest at the instant t. The Lorentz matrix

∥∥�α
α′
∥∥ =


 1√

1 − v2

vl′√
1 − v2

vk√
1 − v2 δkl′ + ϕ(v2)vkvl′


 (2.3)

where ϕ(v2) = v−2(γ − 1), determines the transformation to MCLF where 4-velocity
uα

′ = (1, 0, 0, 0) and 4-acceleration aα
′ = (0, ai

′
). The components ai

′ = �i′
α a

α constitute
a 3-vector a which is the (non-trival) spatial part of the particle acceleration taken in MCLF.

We suppose that the components of total 4-momentum of our particle plus field system
are

pν(t) = muν(t) + P

∫
t

dσµT µν (2.4)

where dσµ is the vectorial surface element on a space-like hypersurface t which intersects
a trajectory at the point (t,z(t)). (By t we take a fibre [6] of ‘instant’ bundle (2.2) over
t ∈ R.) By T µν we denote the components of the Maxwell energy–momentum tensor density

T µν = f µλf ν
λ − 1

4η
µνf κλfκλ. (2.5)

The tensor has an r−4 singularity on a particle trajectory. In equation (2.4) capital letter P
denotes the principal value of the singular integral, defined by removing from t a sphere
K(0, ε) around the particle and then passing to the limit ε → 0.

2.2. Coordinate system

An appropriate coordinate system for flat space–time is the key to the problem. The structure
of (retarded) Lienard–Wiechert potential motivates the introduction of a coordinate system
centred on an accelerated world line. A wide class of such coordinate systems was considered
by Newman and Unti [7]. The set of curvilinear coordinates for flat space–time M4 involves
the retarded time, say u, and the retarded distance r. The former is the root of the algebraic
equation

(y0 − u)2 =
∑
i

(yi − zi(u))2 (2.6)

which is related to the observation time t by the causality condition t − u > 0. The latter is
the distance between an observer event y and the particle, as measured at the retarded time in
the MCLF:

r(y) = −ηαβ(y
α − zα(u))uβ(u). (2.7)
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We start with the coordinate transformation

y0 = u + r�0
α′ nα

′
yi = zi(u) + r�i

α′ nα
′

(2.8)

which is a specific example of the Newman and Unti class of coordinate systems, presented in
[4]. The null vector n := (1,n) has the components (1, cosφ sinϑ, sin φ sinϑ, cosϑ);ϑ and
φ are two polar angles.

To adopt these curvilinear coordinates to the instant form of dynamics (2.2), we replace
the retarded distance r by the expression

r =
√

1 − v2

1 + (v ·n) (t − u) (2.9)

where t is the observation time. On rearrangement, the final coordinate transformation
(yα) �→ (t, u, ϑ, φ) looks as follows:

y0 = t yi = zi(u) +

√
1 − v2

1 + (v · n) (t − u)�i
α′ nα

′
. (2.10)

Since the bundle (2.2) is trivial [6], we consider space–time M4 as a disjoint union of fibres
i−1(t) := t parametrized by the coordinates (u, ϑ, φ). This coordinate system is global
because different ’s do not intersect.

2.3. The electromagnetic field’s stress–energy tensor

The components of the Lienard–Wiechert potential Â = Aα dyα depend on the state of the
particle’s motion at the retarded time only:

Aα = e
uα(u)
r(y)

. (2.11)

Here uα(u) are the components of the velocity one-form û. The electromagnetic field is written
as [4]

f̂ = e

r2
[û + r(akû + â)] ∧ k̂ (2.12)

where one-form k̂ = kα dyα has the components kα = ηαβ k
β, kβ = �β

β ′ nβ , and scalar
ak = kα a

α. To express the components fαβ in terms of curvilinear coordinates (2.10) we
substitute the right-hand side of equation (2.9) for the retarded distance r in this expression.

It is straightforward to substitute these components into equation (2.5) to calculate the
electromagnetic field’s stress–energy tensor. Following [3], we present T αβ as a sum of
radiative and bound components,

T αβ = T
αβ

rad + T
αβ

bnd (2.13)

where

4πT 00
rad = e2

(t − u)2

[1 + (v · n)]4

(1 − v2)2 (a2 − (a · n)2)

4πT 0i
rad = e2

(t − u)2

[1 + (v · n)]3

(1 − v2)3/2 (a2 − (a · n)2)(vi
′
+ ni

′
)�i

i′ (2.14)

are the radiative components, and

4πT 00
bnd = 1

2

e2

(t − u)4

[1 + (v ·n)]4

(1 − v2)3 [1 − 2(v · n)2 + v2]

+ 2
e2

(t − u)3

[1 + (v ·n)]4

(1 − v2)5/2
[(a · v)− (a ·n)(v · n)] (2.15)
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4πT 0i
bnd = e2

(t − u)4

[1 + (v · n)]4

(1 − v2)5/2
[vi

′ − (v · n)ni′ ]�i
i′ +

e2

(t − u)3

[1 + (v ·n)]3

(1 − v2)2 ([(a · v)

− (a ·n)(v ·n)]vi′ + [(a ·v)− (a ·n)− 2(v ·n)(a · n)]ni′
+ [1 + (v ·n)]ai′)�i

i′ (2.16)

are the bound components. The results coincide with the components T 0α obtained in [4,
equations (5.4) and (5.5)] where k α should be replaced by �α

α′ nα
′
and the right-hand side of

equation (2.9) should be substituted for the retarded distance.

2.4. Electromagnetic field momentum

Now we calculate the electromagnetic field momentum

pµ
em =

∫
t

dσ0T
0µ (2.17)

where an integration hypersurface t = {
y ∈ M4 : y0 = t

}
is a surface of constant t.

The surface element is given by dσ0 = √−g du dϑ dφ where

√−g = (1 − v2)2

[1 + (v ·n)]3 (t − u)2 sinϑ (2.18)

is the determinant of the metric tensor of Minkowski space viewed in curvilinear coordinates
(2.10). The angular integration can be handled via the relations∫ π

0
dϑ sinϑ

∫ 2π

0
dφ ni = 0

∫ π

0
dϑ sinϑ

∫ 2π

0
dφ ni nj = 4π

3
δij

∫ π

0
dϑ sinϑ

∫ 2π

0
dφ ni nj nk = 0.

(2.19)

The calculation reveals that the decomposition of the stress–energy tensor into radiative and
bound components is meaningful. Indeed, the radiative component (2.14) scales as r−2; its
contribution is regular:

p0
rad =

∫
y0=t

dσ0T
00

rad = 2

3
e2

∫ t

−∞
dua2(u)

(2.20)

pi
rad =

∫
y0=t

dσ0T
0i

rad = 2

3
e2

∫ t

−∞
dua2(u)vi(u).

The radiative momentum is accumulated: its amount in t at fixed time t depends on all
previous motion of a source. While the bound 4-momentum depends on the state of the
particle’s motion at the observation time only! The matter is that the total (retarded) time
derivatives arise from angular integration:

p0
bnd = P

∫
y0=t

dσ0T
00

bnd = 2

3
e2

∫ t

−∞
du

[
1

(t − u)2

(
−1

4
+

1

1 − v2

)
+

1

t − u

2(v · v̇)
(1 − v2)2

]

= 2

3
e2 lim

u→t

(
−1

4
+

1

1 − v2(u)

)
1

t − u
(2.21)
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pi
bnd = P

∫
y0=t

dσ0T
0i

bnd = 2

3
e2

∫ t

−∞
du

[
1

(t − u)2

vi

1 − v2
+

1

t − u

(
v̇i

1 − v2
+

2(v · v̇)vi
(1 − v2)2

) ]

= 2

3
e2 lim

u→t

vi (u)

1 − v2(u)

1

t − u
. (2.22)

This is explained by Teitelboim in [3, p 1581] ‘It is of interest to emphasize that the tensor
T
µν

bnd and, in particular, its components T 0µ
bnd, which are to be interpreted as the negatives of the

energy and momentum densities in the rest frame, are retarded functions. Thus a change in
the energy–momentum density on σ (τ ) can be caused only by a change of the kinematics of
the charge prior to τ 1. Nevertheless, if one adds all the contributions from the various volume
elements, the net result depends only on a neighbourhood of the present event z(τ ). Thus it
looks as if the charge carried a rigid electromagnetic cloud, but a truly rigid eletromagnetic
configuration would contradict the finite speed of propagation of the interactions.’

From the formal point of view the bound components (2.21) and (2.22), involved in
particle 4-momentum, are divergent. We arrive at the gap between structureless point particles
and finite field energies. In Rohrlich’s opinion [1], it is impossible to fill in the gap using the
methods of classical electrodynamics. A higher level theory is necessary. For this reason we
do not make any assumptions about the particle structure, its charge distribution and its size.
We only assume that the particle 4-momentum is finite. To substantiate our point of view we
are going to analyse commonly used manipulations with divergent terms (2.21) and (2.22).

2.5. Schott term

We face the problem of how the Schott term arises due to integration of the bound component
of the energy–stress tensor. One usually works in the frame of the covariant approach where
the proper time τ is used as an evolution parameter. Since dτ =

√
1 − v2(t) dt , we substitute

the small parameter ε for
√

1 − v2(t)(t − u) in equations (2.21) and (2.22). In terms of
covariant coordinates the components of the singular 4-momentum involve the term

2

3
e2 lim

ε→0

uµ(τ − ε)

ε
. (2.23)

(Only the zeroth component has the additional term.) We are interested in the limit ε → 0
and, therefore, we expand this singularity in the immediate vicinity of the world line. In
the Taylor expansion of equation (2.23) the structureless term is proportional to the particle
4-acceleration.2 It is the well-known Schott term involved in the Lorentz–Dirac equation (1.1).

2.6. Renormalization of mass

It is often assumed that the particle is a ‘matter’ core ‘dressed’ in the electromagnetic ‘cloud’.
The divergent term—the first term of the Taylor expansion of (2.23)—should be added to a
rest mass of the ‘matter’ core, so that this already renormalized mass is meaningful.

We have a problem of how such a renormalization procedure for bound 4-momentum with
components (2.21) and (2.22) should be defined. Indeed, the zeroth component contains a term
which is not proportional to the zeroth component of 4-velocity while the spatial components
are proportional to ui. The reason is that we use surface t = {

y ∈ M4 : y0 = t
}

as an
1 The author deals with covariant proper time τ ; σ (τ ) is the spacelike surface (2.24) which intersects a world line at
point z(τ ) = (t,z(t)).
2 One usually assumes some radius of the particle and proclaims the structure-independent terms as those of true
physical meaning.
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integration hypersurface in equation (2.17). Rohrlich [1] and Teitelboim [3] suggest that the
momentarily co-moving Lorentz frame of the charge plays a privileged role in the definition
of the energy–momentum corresponding to the bound part of the energy–momentum tensor.
The authors use the spacelike surface σ t defined by

uµ(τ)(y
µ − zµ(τ )) = 0 (2.24)

as the integration hypersurface. Our aim is to make strict sense of this ‘privileged role’.
So, we have to calculate the volume integral (2.17) over tilted hyperplanes. To apply our

previous results we make such a Lorentz transformation 0 that a tilted hyperplane becomes
t ′ = {

y ∈ M 4 : y0′ = t ′
}
. After trivial calculations we arrive at

p
µ

bnd =
∫
σt

dσνT
νµ

bnd

=
∫
y0′ =t ′

dσ0′T 0′α′
bnd 0α′µ

= 0µ
α′pα′

bnd. (2.25)

Using 0µ
α′ = �µ

α′ , where matrix elements �µ
α′ are given by equation (2.3), we arrive at the

frame in which the particle is momentarily at rest at time t. In MCLF the particle velocity u′ =
(1, 0, 0, 0) and the spatial components (2.22) of bound 4-momentum vanish:

p0′
bnd = lim

u′→t ′

1

2
e2 1

t ′ − u′ pi′
bnd = 0. (2.26)

As usual, the divergent quantity e2/2ε is linked with the mechanical ‘matter’ mass of a particle,
so that the renormalized mass is considered to be finite.

We see that the computation of the rate of the electromagnetic field momentum which
flows across all the hyperplane y0 = const does not contradict the usual approach in which
one calculates an electromagnetic flow across a thin tube around the world line per unit proper
time. But it allows us to explain the meaning of manipulations with divergent terms such as
‘renormalization’ of mass and separation of the ‘structure-independent’ Schott term.

3. Total angular momentum tensor of the electromagnetic field

The charged particle cannot be separated from its bound electromagnetic ‘cloud’. We
would like to construct the particle 4-momentum in terms of its state functions (velocity,
acceleration, etc). The usual approach based on the ‘renormalization’ of mass and separation
of the ‘structure-independent’ Schott term leads to Teitelboim’s formula (1.2). This approach
is mathematically incorrect. To obtain additional information we calculate the conserved
quantities corresponding to the invariance of the theory under proper homogeneous Lorentz
transformations.

We are now concerned with the total angular momentum tensor of the electromagnetic
field [1]:

Mµν
em =

∫
t

dσ0(y
µ T 0ν − yν T 0µ). (3.1)

Conservation of the space part Mij
em of the tensor M

µν
em is due to invariance under space

rotations. Conservation of the mixed space–time components, M0i
em, expresses the centre-of-

mass theorem. It takes place due to invariance under Lorentz transformations.
We substitute equations (2.13) and (2.10) into equation (3.1) to calculate the

electromagnetic field’s angular momentum tensor. Routine scrupulous calculation reveals
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the (divergent) components of bound 4-momentum (2.21) and (2.22) in the proper places! The
components of the angular momentum tensor are as follows:

J k
em := εkij M

ij
em = εkij z

i(t)p
j

bnd +
2

3
e2

∫ t

−∞
dua2(u)εkij z

i(u)vj (u)

+
2

3
e2

∫ t

−∞
du εkij vi (u)aj(u) (3.2)

Ki
em := −M0i

em = −tpi
bnd + zi(t)p0

bnd +
2

3
e2

∫ t

−∞
dua2(u)[zi(u) − vi(u)u]

+
4

3
e2

∫ t

−∞
du

vi(u)(a · v)√
1 − v2

. (3.3)

This result reinforces our conviction that the bound momentum and its ‘matter’ mechanical
counterpart constitute the 4-momentum ppart of the charged structureless particle.

Taking into account the mechanical part of the angular 4-momentum, we obtain the
following ten conserved quantities which are due to the invariance of our composite particle
plus field system under infinitesimal transformations of the Poincaré group:

p0 = p0
part +

2

3
e2

∫ t

−∞
dua2(u) (3.4)

pi = pi
part +

2

3
e2

∫ t

−∞
dua2(u)vi(u) (3.5)

J k = εkij z
i(t)p

j
part +

2

3
e2

∫ t

−∞
dua2(u)εkij z

i(u)vj (u) +
2

3
e2

∫ t

−∞
du εkij vi(u)aj (u) (3.6)

Ki = −tpi
part + zi(t)p0

part +
2

3
e2

∫ t

−∞
dua2(u)[zi(u)− vi(u)u] +

4

3
e2

∫ t

−∞
du

vi(u)(a · v)√
1 − v2

.

(3.7)

Thus we finally arrive at the natural decomposition of the conserved quantities into the particle
component and radiative component. The former depends on the instant characteristics of the
charged particle while the latter is accumulated with time.

To construct the particle motion equation we only need to consider the vicinity of the
world line. We calculate how much electromagnetic field momentum and angular momentum
flow across hypersurface t . We can do it at a time t + 3t. We demand that the change in
these quantities be balanced by a corresponding change in those of the particle, so that the
total energy–momentum (p0,p) and angular momentum (J,K) are properly conserved. Via
the differentiation of equations (3.4)–(3.7) we arrive at the following system of differential
equations:

ṗ0
part = − 2

3e
2a2(t) (3.8)

ṗi
part = − 2

3e
2a2(t)vi (t) (3.9)

εkij v
i(t)p

j
part = − 2

3e
2εkij v

i (t)aj (t) (3.10)

pi
part − vi(t)p0

part = 4
3e

2 v
i(t)(a · v)√

1 − v2
. (3.11)

Its solution is a motion with constant velocity where pµ
part do not change.

The problem of particle motion in the presence of an external force requires careful
consideration. We do not know the rate of the external device in the balance condition of the
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total angular momentum (J ,K). (Considering the energy–momentum we use the Lorentz
force, or capacity for a non-electromagnetic force.)

Of course, one would prefer an expression which explains how 4-momentum of charged
particle depends on its velocity and acceleration etc. It is obvious that this expression should
satisfy the differential consequences of the total angular momentum. To check Teitelboim’s
expression we substitute the right-hand side of equation (1.2) for ppart in equations (3.10)
and (3.11). We see that equation (3.10) is satisfied identically while equation (3.11) is not
fulfilled. Therefore, Teitelboim’s expression (1.2) contradicts the differential consequence of
‘centre-of-mass’ conserved quantity.

4. Conclusions

We can briefly summarize our conclusions as follows:

• a charged particle cannot be separated from its bound electromagnetic ‘fur’, so that the 4-
momentum of the particle is the sum of the mechanical momentum and the electromagnetic
bound 4-momentum.

• Teitelboim’s expression for particle 4-momentum as a linear function of particle’s velocity
and acceleration contradicts the structure of centre-of-mass conserved quantity originated
from an invariance of our composite system under Lorentz transformations.

Moreover, the system of six linear equations (3.10) and (3.11) in variables p
µ
part does not

possess a solution whenever the particle’s motion is accelerated. Does it mean that there is no
expression of type (1.2) within an interaction area? The problem requires careful consideration.
It is worth noting that in the absence of an external force the motion of a classical point charge
satisfies the law of inertia (Newton’s first law).
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